Down to the Roots: The Appeal of Biochar

By Jordan Lonborg

For those of you who are tapped into the world of regenerative farming, or if you are a scholar in the study of ancient Amazonian agricultural farming tactics, biochar is probably a familiar term. If not, let me explain. Biochar is an ancient tool used to increase the fertility of the soil that has started to make a comeback in today’s regenerative farming world. At its essence, biochar is essentially a form of charcoal that is incorporated into compost or directly into the soil profile as a means of storing carbon and nutrients and increasing your soil’s moisture holding capacity.

One of the reasons biochar is making such a huge comeback in today’s regenerative farming world is that it is fairly easy to make. You start with a biomass, in our case, grapevine prunings and fallen logs and brush that we’ve collected while cleaning our forest understory to keep our fire risks down. Add some kind of receptacle, or even just a cone-shaped hole in the ground. You then light the fuel on fire burning the material from the top on down. The gases that are contained in that biomass beneath the fire combust and burn off, but leave almost all the carbon behind. If done properly, there is very little Carbon Dioxide released into the atmosphere (imagine a smokeless fire if you will). Once the fire has burned through your pile of biomass, you are left with a form of nearly pure carbon or biochar. This would be the simplest way of creating biochar for small producers. There are many other forms of production as well. There are larger kiln style burners all the way to industrial style setups that companies like Pacific Biochar are using. But in all cases, the idea is that you are turning raw fuel into a stable form of carbon as efficiently as possible.

Biochar - piles

Beyond its carbon capturing ability, biochar improves your soil in several ways. Because of its crystalline structure, one gram of biochar can contain – conservatively – over 2000 square feet of surface area. That surface area has the ability to hold on to both nutrients and water molecules and release them slowly, over time as needed. These properties are very similar to those of limestone. Both limestone and biochar are essentially banks and whenever our grapevines need a little cash, they are able to access the needed resources easily. A recent 3-year study conducted by Monterey Pacific Inc. showed that using biochar in conjunction with compost increased both grapevine yield and soil water holding capacity.

Last year, we ran a biochar trial very similar to Monterey Pacific’s here at Tablas Creek. We incorporated ten tons of biochar into some of the compost we made here on the property. We then took that biochar/compost mix and spread it out on the ground of our pig pen. Next, we moved our sheep into that pen and fed them feed harvested from the property on top of the mix for 3 days:

Biochar - Grazing sheep

We gathered that compost/biochar/manure mix and spread in our trial block. In the trial block we left 2 rows untreated, treated 2 rows with just compost, 2 rows with compost/biochar mix, and 2 rows with the compost/biochar/manure mix, repeated 3 times (18 rows total). We then seeded all rows with cover crop. It did not take a trained eye to see the difference between the rows that were treated and those that were not. The cover crops were happy in all the rows, but those that had the bio-char and compost mix (like the row on the left in the photo below) had a cover crop that was considerably taller than the rest of the block.

Biochar - Growth from application
Beyond the fact that biochar has the ability to increase yields of grapevines and soil moisture holding capacity, onsite production of biochar provides an alternative to the burn piles that pollute the air in many farm areas while also releasing massive amounts of CO2 into the atmosphere. Every farming property has to deal with biomass collected from the previous growing season. But choosing to produce biochar with that biomass is a win-win, creating a product that helps our vineyard while significantly reducing air pollution and CO2 release.

Up to this point, we’ve been purchasing biochar for our experiments. In the next couple of months, we’ll be designing a small kiln to trial here on the property. We want to get a feel for the cost, safety, and efficiency of the process. But we feel great about the prospects for this experiment. Whatever canes are left after chipping what we need for our compost program, we will turn into biochar. Whatever wood we collect while clearing the understory of the property to reduce fire hazard and improve access for our flock, we will turn into biochar. The biochar we create will be incorporated into our compost, aerating the pile and helping the composting process, which proceeds better in the presence of oxygen.

So, what do we think the impacts of biochar will be? Better soil fertility and water-holding capacity. A healthier compost pile. Reduced fire hazard and more grazeable land for our herd. Good conditions for the re-growth of native vegetation. More carbon in the soil and less (perhaps dramatically less) CO2 produced. Win-win-win-win-win.

Farm Like the World Depends On It

Biochar - overview


2020: The Year Climate Change Got Real for American Wine

As I write this, I'm staring out at a dim, yellow landscape, the indistinct sunlight filtered through a thick layer of atmospheric smoke. I have a sweatshirt on because the day has never really warmed up here in town. We had a couple of days this past week, prime ripening season in Paso Robles, where it barely made it out of the sixties. A photo, no filter applied:

Harvest Apocalypse

We're not really complaining; as apocalyptic as it looks, the air has been cool and fresh at the surface, and we got a chance to catch up on harvesting after what was a scorching hot previous weekend. And plenty is ready. Pretty much all our Syrah. The Vermentino and Marsanne. Our first lots of Grenache Blanc. The smoke has reduced actual temperatures from model forecasts by some 20 degrees, and if we'd had the mid-90s weather that was forecast for this week, it's possible that new blocks would have ripened before we could get through the backlog that the last heat wave produced.

This smoke layer, driven by the fact that six of California ten largest fires ever are currently burning, is only the most recent of a series of unprecedented things we've seen in the 2020 growing season. A week ago, we had a heat wave that crested with back-to-back-to-back days that topped out at 109, 113, and 111. The Paso Robles Airport broke its all-time high with a 117 reading. And San Luis Obispo hit 120°F, which appears to be the highest temperature ever recorded in a coastal zone anywhere in North or South America.

Last month, we saw a trio of fires in the Central Coast produce so much smoke at the surface that we closed our tasting patio for four days because the air quality was so bad. On August 20th, San Luis Obispo had the worst air quality in the world. Those fires were sparked by a surge of tropical moisture, the remnants of Tropical Storm Fausto, that moved up the California coast and produced thousands of lighting strikes on August 14th and 15th. The fires lit by those lightning strikes were fueled by another heat wave that pushed temperatures over 105°F each day between August 15th and 18th.

Paso Robles is hot in the summer. Summer days over 100°F have never been rare here. But the increased number and distribution of these days, the fact that records are falling more often, the earlier and earlier beginnings to harvest (and the shorter durations between veraison and harvest), and finally the new, tropical-influenced rainfall patterns, are new. A few data points that I look at:

  • Over our first 15 vintages, 1997-2011, we started our estate harvest in August 40% of the years. Since 2012, we have done so 78% of vintages. Similarly, in those first 15 years, there were six times we harvested into November, and another four that finished October 28th or later. Over the last 8 years, we haven't once harvested in November.
  • It's not just harvest. This year's gap between veraison and harvest was just 35 days, breaking our record of 36, set in both 2016 and 2019. Before that, the record was 39, in 2015). 2013 was the first year that we saw 40 or fewer days between veraison and harvest. So, in less than a decade, we've seen this critical ripening period shrink by 15%. Crucial growing periods are getting hotter. 
  • Our total growing season degree days, a rough measurement of the number of hours in which it's warm enough for grapevines to photosynthesize efficiently, shows that since 2000, our five warmest years have all come since 2012.

All those data points are indicative, but none of them are likely to on their own pose much of a threat to winemaking here in Paso Robles. But they feed into two phenomena that do: droughts and fires. I'll address droughts first. I wrote a 3-part blog series back in 2014 about our move toward dry farming as a part of being ready for what seems likely to be a drier future. In the research for that, I looked at EPA projections for rainfall showed that, depending on our success in reducing emissions, coastal California would see between 20% and 35% less precipitation annually by the end of the 21st Century:

Southwest-precip-change

That research has since been reinforced by studies of warming in the Pacific Ocean, which will have a complex series of consequences, including increased rainfall in places like northern Australia, the Amazon, and Southeast Asia, but less rainfall (and a later onset of the rainy season) in coastal California. This suggests that droughts, particularly the multi-year droughts like the one we saw between 2012 and 2016, will become more common.

Next, fires. It's not like California is a stranger to fires, but severe ones are definitely happening more often. I moved out here in 2002. The first time after that there was any smoke here was July 2008, when I wrote in a blog that two big fires to our north had burned some 73,000 acres in three weeks. (Note that that figure seems almost quaint now, with the horrific Creek Fire east of Fresno burning 160,000 acres in the first four days.) The second fire I noted in the blog was in 2016. Except for 2019, we've seen scary fires in California's wine country each year since then, and 2020 has already seen the most acres burned on record:

The fires are driven by a number of factors, including higher temperatures, lower humidities, poor utility maintenance, human encroachment into wildland areas, and accumulated fuel in the forests after a century of fire suppression. All of these encourage fires to be bigger, faster-growing, and more destructive than before. But what has set the worst ones off in recent years has been climate-related: either through dry winds spurring (and spreading) fires through downed power lines in periods before it has rained in California, or by tropical moisture that has sparked summer lightning.

The fires that impacted Northern California in 2017 and 2018 were produced by late-season (October and November) windstorms that spurred fires from an aging electrical grid. This is largely a governmental and regulatory failure. But while these windstorms aren't new, and don't particularly appear to be a function of climate change, thanks to climate change the time of year when these storms are common is more likely to still be summer-dry. That is why the climate change-driven later onset to the rainy season is a significant contributor to the number and severity of fires.

2020's fires in California have been different. The storms this summer that produced the first series of wildfires were driven by tropical moisture that was pulled into California. A warming climate produces more and larger tropical storms and hurricanes. 2020 has already seen so many tropical storms that I've begun to read articles about how NOAA might run out of names. The direct impacts of tropical storms and hurricanes on California are rare: minor compared to their impacts in the Atlantic or the Gulf of Mexico. But the more of these storms that form, the greater the chance that tropical moisture can end up in unexpected places. These occasionally produce enough moisture to provide some short-term fire risk reduction (such as the July 2015 storm that dropped more than two inches of rain on us) but more often produce extensive lightning with only limited moisture. These sorts of storms introduce extreme fire risk. 

The combination of warmer days, dryer (and later-beginning) winters, and more frequent incursions of summer tropical moisture has combined to produce drastically more days with very high fire risk.

So, what to do? That's the hard part. Most of the response has to come at the governmental level. Investments need to be made to modernize utilities. Forest management practices could be improved to reduce the amount of fuel that builds up. Cities, counties, and states should adopt growth plans that reduce the human/wildland interface as much as possible, both to reduce the opportunities for fires to start and to minimize the loss of life and property when they do. But ultimately, if climate change itself goes unaddressed, all these initiatives (none of which are easy or likely to come without resistance) are likely to be overwhelmed by the growth in the number of extreme fire days and fast spread of fires that do start.

Here's where regenerative agriculture comes in. One of its tenets is that agriculture has an important and necessary role in the reduction of greenhouse gases (and especially Carbon Dioxide) in the atmosphere. And plants, after all, are the best engines we have in doing so, since photosynthesis uses CO2 as one of its inputs, turning that carbon into carbohydrates. But modern farming produces more emissions than the plants it grows consume. Some of that is the fertilizer, derived mostly from petrochemicals. Some of that is the fuel for the tractors and other machinery. And some of it is the processing of the agricultural products.

Regenerative agriculture leads the way toward building carbon content in the soil, through a combination of permaculture, cover crops, reduction in tillage, and the replacement of chemical inputs with natural ones like compost or manure. Soils with more carbon content also hold more moisture, which will help California wineries weather the droughts too. We showed in the application process for our new Regenerative Organic Certification that it was possible to increase our soil's carbon content while growing grapes even in a dry climate like Paso Robles.

Regenerative farming is not just for wineries. It's what all farms, from row crops to orchards to fibers to livestock, should be moving toward. But vineyards offer some of the lowest-hanging opportunities for better farming, because wine is a value-added product with the resources to invest, and the investments tend also to make higher-quality grapes and longer-lived vines, providing return on the investments.

I can't imagine how California, Oregon, or Washington wineries can live through the 2020 vintage without worrying about how climate change might impact their future. A small silver lining could be encouraging more of that community to move toward regenerative farming. Consumers have a role to play here too. Before this year, there wasn't an available standard for moving to, measuring, and being audited for being regenerative. Now, with the launch of Regenerative Organic Certification, there is. If your favorite wineries are not farming regeneratively, you should be asking them why not. It's one of the tools we as farmers have to take some control over what is likely to be an increasingly volatile and dangerous future that might look like last week a lot more often than any of us would want. 

IMG_6029


Introducing Regenerative Organic Certified (ROC): Farming Like the World Depends on It

By Jordan Lonborg

In February of 2019, Tablas Creek was approached by Elizabeth Whitlow (Executive Director of the Regenerative Organic Alliance) to see if we would like to take part in a pilot program of a new approach to farming called Regenerative Organic. It was clear from the organizations behind this effort, including the Rodale Institute, Patagonia, and Dr. Bronner’s, that this was going to be appealing, both inclusive of and yet more comprehensive than organic and biodynamic. I’ll let their Web site explain:

“Regenerative Organic Certified™ was established in 2017 by a group of farmers, business leaders, and experts in soil health, animal welfare, and social fairness. Collectively called the Regenerative Organic Alliance (ROA), our mission is to promote regenerative organic farming as the highest standard for agriculture around the world.”

At first, considering the fact that we are already certified organic and biodynamic, juggling a third certification was not the most exciting proposition for me. But as I began to dig through the ROC Framework and its requirements, it became clear that this was a certification that Tablas Creek Vineyard had to get behind and fully support. We accepted the invitation to be the only winery in the pilot and the ball started to roll.

Regenerative farming is a style of farming in which soil health and building that soil is the main focus. It is a term that was developed by Robert Rodale (the son of the legendary organic farmer J.I. Rodale) to “distinguish a kind of farming that goes beyond sustainable.” But as appealing as this sounds, there’s more: regenerative organic builds in requirements that participants also certify the humane treatment of any animals on the farm and that the farming crews are paid living wages, work in safe conditions, and understand their rights. Therefore, this certification incorporates three pillars; soil health, animal welfare, and social fairness.

The heart of Regenerative Organic Certified is the Soil Health Pillar. The property must be certified organic. Various regenerative farming tactics must be employed such as no-till farming (with few exceptions), cover cropping, incorporation of livestock and mob grazing (when animals are given a small area where they can completely graze that area in a short amount of time and then are moved to start the process over again), and creating habitat for pollinators and beneficial insects are a few of the recommended or required practices. Composting on-site is encouraged. Comprehensive soil tests showing that you’re maintaining or building carbon are a requirement, because one of the fundamental tenets of ROC is that farming can be and must be an agent for fighting climate change and reducing the use of nonrenewable resources. After all, their slogan is “Farm like the world depends upon it.”

Mushrooms growing on Compost pile Growth from biochar application


Because of the work we've been doing with biodynamics, there weren't many practices we needed to change or implement here. But the testing that we needed in order to show that we were building carbon content in our soils was tremendous validation that the way that we've been farming really is capturing carbon and building soils that match up well with the highest national and international standards. 

Jordy with AlpacaFor the Animal Welfare Pillar, like the Soil Health Pillar, ROC requires that livestock on the property are to be certified organic under USDA standards. The humane treatment of the livestock in all aspects of their life is a necessity. The health, nutrition, shelter (where applicable), protection, herding methods, handling methods, transport, and slaughter are all evaluated when applying to be Regenerative Organic Certified.

As is true with any pilot program, the goal is to incorporate new standards while providing feedback to help make those standards stronger and more consistent. By this measurement, the pilot program was a huge success. Both Tablas Creek and the ROA learned a great deal about which requirements within the pillars needed adjustments and which didn’t for vineyards. For example, the initial draft of the standards included an ironclad requirement for no-till farming. In the process of trying to achieve the “gold” ROC standard, we picked up a few more certifications along the way. Not only is the herd certified by CCOF, Demeter-USA, and Regenerative Organic, they are also certified by Animal Welfare Approved. I can assure you, this highly decorated flock is extremely proud of themselves at the moment and if you were to see them now you’d swear they looked a bit taller.

Flock of sheep in tall grass

What separates ROC from most other certifications is its Social Welfare Pillar. The dark side of agriculture in today’s world is how farmworkers are treated. This certification addresses that situation head on. It ensures that the farmworkers, whether employed or subcontracted, receive a living wage, that they understand their rights, and that their working conditions are clean and safe. These are just a few examples of what is incorporated in the Social Fairness Pillar.  

We also received a certification from the Equitable Food Initiative. This group ensures the social welfare of the farmworker crews on the property. We all spent a week of intensive training together. These sessions lasted all day long and consisted of physical activities, team building skills, communication skills (both with each other and management), problem solving skills, and education sessions in which they and we together explored in detail their rights as farmworkers both individually and as a group. It was an extremely powerful week.

Vineyard Crew

Not all of the third party certifications that we obtained are necessary for achieving Regenerative Organic Certified. We took these extra steps in an attempt to obtain the highest level of the certification. For anyone who is reading this post and is interested in obtaining this certification for your operation, reach out to the ROA to determine where you are on the path to ROC and what certifications you will need.

Tablas Creek Vineyard has always been extremely proud of our organic and biodynamic certifications. That said, we have never felt that the certifications were ends in and of themselves. And there are pieces of both of those protocols that we think could be improved. Anyway, we farm the way we do because we feel that it is the right thing to do for the land and the people that work here. But this certification is different. It sends a powerful message to the wine industry, consumers, and our local community. It shows them that Tablas Creek is not willing to accept anything less than the very highest standard for our soils, our animals, and the welfare of the people who work here.

We are beyond proud to be the first vineyard in the world to be Regenerative Organic Certified and we fully believe that this certification can and will be the future of farming in all forms of agriculture!!    

A big thanks to the folks at the Rodale Institute, Patagonia, and Dr. Bronner’s for spearheading this movement! Keep farming like the world depends on it!!!